Chine is still a major growth engine

Over the last 4 years we have seen solid growth in robot sales worldwide. The biggest growth has been in China. Overall 70% of all robots are sold in China, Japan, Germany, South Korea and USA. 25% of all robots are sold in China. The growth does not seem to stop anytime soon. Why is that?

Over the last few years we have seen major growth also in USA, South Korea and Japan. The overall sales figures from the IFR World Robotics are shown below:

world-wide-sales

Worldwide robot deliveries over the last 10 years. The growth since 2009 is dramatic.

The CAGR since 2009 has been 17% and it is interesting that more than half of all robots sold are delivered to factories in Asia. The total value of the robot industrial market 2014 was $10B, and if integration is included the total value is close to $30B. This very much matches the general rule for cost breakdown – ~30% of an installed system is the actual robot, ~20% of the cost is related to other hardware such as the end-effector, fencing, and conveyors.

Sales in China has been particularly impressive with 50%+ annual growth that last 3-4 years. The growth has been very much motivated by a need to retain manufacturing in China. The hourly wages for manufacturing workers has gone up 350% over the last 10 years.

80% of the robots delivered were manufacturing by foreign companies or joint ventures in China. These companies experienced 49% year-year growth 2014-2015. The remaining 20% of robots delivered were made by Chinese companies. The annual growth (2014-2015) was 78% which is most impressive.

The division of market shares is shown below (for 2014). As expected the biggest company was FANUC, but closely followed by ABB, KUKA and Yaskawa. The biggest Chinese company was Siasun, that is emerging as the leader from the Chinese companies.

Already today more than 30% of all cars manufactured worldwide are produced in China. However, very few of these are sold outside China. First of all there is a major home market and in addition the industry is challenged by inconsistent quality.

For robotics in general the main application area is still automotive, which takes up close to 42% of all robots sold. Electronics is number 2 and metal handling is 3rd. The fact that China has emerged as the largest producer of cars and also as a country with a need for automation to remain competitive points to a clear need for major growth in robot sales.

Often the maturity of a market is measured by the number of robots deployed for every 10,000 workers in an industry. Korea has emerged as a leader with almost 500 robots deployed / 10,000 workers. Japan is second and Germany third. The world average for manufacturing countries is 87 robots / 10,000 workers. For 2014 China had only ~40 robots / 10,000 workers. Consequently China would have to double its robot inventory to even have average utilization of robots.

If we zoom in on the automotive industry then the average penetration is 1 robots / 10 workers. Japan is the leader  with use of lean manufacturing and a high degree of automation. Countries such as Germany, USA and S. Korea are all close to the expected 1/10. China on the other hand is closer to 1/30 as shown below.

Consequently, one would expect to see major growth for the automotive market too. Salaries are lower in China, but the real driver is really quality of the final product. The big driver is consistent quality to ensure that product manufactured at any time of the day or any day of the week have the same quality.

Frequently, the improvement in quality has been achieved through use of machine tools. They have a high stiffness and can generate high accuracy products with a high quality. One challenge for a factory that is laid out using machine tools is limited flexibility. It is difficult to change a factory line with a series of machine tools. In the automotive industry it is common to change the model at least annually and even with a common platform programming can be a major challenge. Consequently, we have seen an increased interest in utilization of robots as a replacement for machine tools. It is easier to change the end-effectors and industrial robots are designed for easy programming. Consequently, we are seeing a shift from machine tools to industrial robots. The general statistics for machine tools vs robots is shown below.

Again China is only at half in its utilization compares to major markets such as USA, Japan and Germany. Consequently there is no doubt we will continue to see major growth in China and slowly we will also see a strong presence of Chinese companies. In some cases these companies will emerge directly from China and in some cases these companies will emerge from foreign acquisitions such as the Midea acquisition of the majority share in KUKA AG.

Overall the robotics industry is expected to continue to see solid (~15-20% annual growth) but the major growth driver will without doubt continue to be China for the foreseeable future.

Note: Many of the numbers in the post were adopted from the IFR World Robotics Publication.

Robot Growth in Asia

Tags

Over the last couple of years we have seen a major shift in industrial robot use worldwide. China, Japan and South Korea are responsible for 40% of all new robot Installation. China has more than 25% of all annual installations. The world market for robots grew 17% last year and has had a fairly steady growth since 2009. There are no indications that this growth will not continue for the next few years.

Robot shipping 2015

Shipping of robots worldwide over time [IFR World Robotics 2015]

It used to be that the biggest market for robotics was United States. By 2014 China took over as the single largest market. Over the last two years we have seen 50% annual growth in China in terms of new robot installation. China still has much below average installations of robots. The maturity of a market is typically compared by number of robots installed per 10,000 workers in the manufacturing industry. Mature industries, such as automotive, will typically have 1 robot for every 10 workers. South Korea has the most penetration of robots for manufacturing with 478 robots / 10,000 workers. Japan is #2 with 314 robots / 10,000 workers. Germany is at 292, USA is at 164. The world average is at 87 robots. China is at 36. Even with twice as many robots sold the country would still be below average is terms of use of robots. Even in automotive China is at 1 robot per 30 workers, and there is a lot of opportunity.

China robots 2015

Robot sales/shipping in China 2014. [IFR World Robotics 2015]

Why all the automation in China? 

An obvious answer would be that salaries in China have increased by 320% over the last decade. This is clearly challenging the economic feasibility of out sourcing from major industrialized countries such as USA, Germany, Italy, Japan, … No doubt this is a factor. 10 years ago a popular statement was “the world is flat”, i.e., shipping is cheap and as such products can be made anywhere. This is not necessarily true anymore.

However, a more important factor is product quality. In most cases automotive companies did not automate to reduce costs, but to build products that have a homogenous quality. China is slowly realizing that 7 days a week consistent quality is a key factor to international sales. To achieve this they need to have more robots for the plate shop, welding and paint operations. For electronics where tolerances are even more critical this is even more pronounced. Finally, China is trying to build a major aerospace industry where quality is second to none. All this points to continued major growth in robot use in China.

In the past many of the robots have been built outside of the country or through joint ventures by companies such as FANUC, ABB and KUKA. Even today close to 75% of all robots are built by the big robotics companies. However Chinese companies such as GSK, Siasun, etc. are slowing gaining on the market. The accuracy and average MTBF are improving to a level that make these products competitive at least in China.

No doubt the new generation of collaborative robots from UR, ABB, FANUC, etc are all going to be important for significant new growth in Asia. Through use of new technologies such as machine vision, machine learning, … we will see major new growth in robotics, but most of it will be in Asia at least for the short-term.

DARPA Student Video Contest

Tags

DARPA LAUNCHES ROBOTS4US VIDEO CONTEST FOR HIGH SCHOOL STUDENTS

Winners Will Earn Opportunity to Attend DARPA Robotics Challenge, Discuss Future Implications of Robotics on Society

How will the growing use of robots change people’s lives and make a difference for society? How do teens want robots to make a difference in the future? As ever more capable robots evolve from the realm of science fiction to real-world devices, these questions are becoming increasingly important. And who better to address them than members of the generation that may be the first to fully co-exist with robots in the future? Through its new Robots4Us student video contest, DARPA is asking high school students to address these issues creatively by producing short videos about the robotics-related possibilities they foresee and the kind of robot-assisted society in which they would like to live.

Winners of the student video contest will attend, as DARPA’s guests, the DARPA Robotics Challenge (DRC) Finals, to be held in Pomona, Calif., June 5 and 6, 2015, at which teams of engineers from around the world will compete for $3 million in prize money as the robots they’ve created demonstrate their skills in the domain of disaster response. Student video contest winners will also get to participate in a special program in Pomona on June 7, which will bring together students and experts in technology and society to discuss the broader implications of a robotics-rich future.

“Today’s high school students are tomorrow’s technologists, policymakers, and robotics users. They are the people who will be most affected by the practical, ethical, and societal implications of the robotic technologies that are today being integrated into our homes, our businesses, and the military,” said Dr. Arati Prabhakar, DARPA director. “Now is the time to get them engaged and invested by encouraging them to ask questions and provide their views.”

U.S. high school students (grades 9-12) interested in participating in the contest are asked to submit a two- to three-minute video describing their vision for a future robot-assisted society. Videos should consider both current and anticipated advances in robotics technologies, and the implications of these advances for individuals, workplaces, and communities, as well as for national security.

Five winners, along with one parent or guardian each, will receive a trip to attend the DRC Finals, where they will watch some of the world’s most sophisticated robots respond to the kinds of challenges posed by natural and man-made disasters. Following the event, winners will take part in a special panel to discuss the ideas and views they featured in their videos. A “people’s choice” winner also will be selected based on public voting on videos that DARPA will post on YouTube in mid-April.

Submitted videos will be judged on the basis of clarity, creativity, thoughtfulness, originality, and appeal of the submitter’s vision of how robots could make a difference for society and the kind of robot-assisted society they would like to see—as well as the technical quality of the video. Videos by winners and other selected entrants will be featured on the DARPA website, YouTube channel, and other social media networks.

The contest begins on February 11, 2015, and entries from individuals or teams will be accepted through April 1, 2015. For more information and detailed rules and requirements, visit http://www.theroboticschallenge.org/Robots4Us.

Robot Growth

Tags

, ,

The IFR released their early results on robot sales for 2013 in association with the Automatica show in Munich. The numbers are highly encouraging. Worldwide sales went up to 179,000. This is an all-time high. The growth in Europe was modest, USA saw again solid two digit growth and Asia remains the biggest consumer of industrial robots. The major news here is the fact that China saw amazing growth with 37,000 units sold. The other major news is that 6,000 of the sold robots were manufactured in China. They have come a long way since the industry started a decade ago. The news clearly indicate that the single largest robotics market today is in China and it is seeing 40% annual growth. This, in combination with a very low penetration of the overall manufacturing sector, implies that we should expect to see continuing growth numbers for China. It is no surprise that KUKA recently has opened a factory in China, Universal Robots have opened a sales office, and ABB Robotics is headquartered in China. As salaries increase in China and cheap manufacturing is likely to go elsewhere it is only natural that China is trying to automate. The automotive sector is growing and the aerospace sector is also expected to see major growth as commercial airplanes from China are about to enter the market. It will be interesting to monitor the Chinese market as we see continued growth and major pushes by companies such as SIASUN.

PI meeting for the National Robotics Initiative

Tags

, ,

The National Robotics Initiative will have its first PI meeting on October 1-2, 2013. The meeting will be organized by the Robotics Virtual Organization (Robotics-VO) and take place at Hyatt Crystal City, Crystal City, VA.

It is anticipated that more than 200 people will attend the meeting. The program includes presentations by the NRI program managers / agencies, highlighted PI presentations, industry panels and presentations by program managers from other agencies such as ONR, DARPA and NIST. Finally all funded NRI projects will feature 1 or more posters. The event is an excellent opportunity to see the diverse of projects that are carried out within the NRI and also to get a sense of other opportunities that are emerging related to robotics.

Two tutorials are also organized as part of the program. One related to rapid prototyping of hardware using 3D printing, folding, … and another related to ROS/Gazebo.

Georgia Tech Robotics secures $2.3M in funding from NSF

Tags

,

The National Science Foundation (NSF) awarded more than $2 million to fund projects led by Georgia Tech robotics researchers. The principal investigators (PIs) and co-PIs for these projects represent three of the Institute’s six colleges, illustrating the interdisciplinary collaboration that distinguishes Tech as a leader in the national initiative to accelerate the development and use of robots in the United States.

Georgia Tech faculty have a strong tradition of exceptional research and a robust interdisciplinary focus . Extremely proud of and continually impressed with the contributions our researchers make to advancing robotics

Three projects received NSF funding through the National Robotics Initiative program, which was unveiled by President Obama in June 2011, and is led by NSF with support from NASA, the National Institutes of Health, and the United States Department of Agriculture. Tech’s new projects focus on the development of the next generation of robotics and the advancement of the capability and usability of such systems in innovative application areas:

  • “Learning from Demonstration for Cloud Robotics”—Led by School of Interactive Computing Associate Professor Andrea Thomaz, this project received $426K and aims to leverage cloud computing to enable robots to efficiently learn from remote human domain experts.
  • “Understanding Neuromuscular Adaptations in Human-Robot Physical Interaction for Adaptive Robot Coworkers”—Led by School of Mechanical Engineering Assistant Professor Jun Ueda, this research focuses on developing theories, methods, and tools to understand the mechanisms of neuromotor adaptation in human-robot physical interaction. Associate Professor Minoru Shinohara (School of Applied Physiology) and Assistant Professor Karen Feigh (School of Aerospace Engineering) serve as co-PIs on the project, which received almost $1.2M.
  • “Don’t Read My Face: Tackling the Challenges of Facial Masking in Parkinson’s Disease Rehabilitation through Co-Robot Mediators”—Led by College of Computing Associate Dean & Regents’ Professor, Ronald Arkin, this project received almost $580K and has two primary goals: 1) developing a robotic architecture endowed with moral emotional control mechanisms, abstract moral reasoning, and theory of mind sensitive to human affect and ethics; and 2) creating a specific architecture for a robot to mediate communication barriers between caregivers and patients with Parkinson’s disease who experience “facial masking,” or lack of recognizable emotion.

The fourth project, “Bioinspired Collaborative Sensing with Novel Gliding Robotic Fish,” received more than $83K from the NSF’s Robust Intelligence (RI) program, which encompasses all aspects of the computational understanding and modeling of intelligence in complex, realistic contexts. Led by School of Electrical & Computer Engineering Associate Professor Fumin Zhang, the research aims to establish a theoretical framework and provide an enabling technology for robust underwater collaborative sensing with small, inexpensive robots.

Robotics research at Tech attracts more than $35 million in sponsored research each year. Core research areas include mechanisms, control, perception, artificial intelligence, human interaction, and application technologies. The Institute continues to advance personal and everyday robotics through its research into the ways robots can learn from and interact with humans, and by exploring issues surrounding their governance and ethical use.

Robots and Humans

Tags

, ,

Great story in NY Times today about the cooperation between humans and robots. The next generation of robot system systems will be Co-robots where they cooperate with humans to perform tasks that may be difficult to perform by humans alone as they require heavy lifting, high precision or the tasks are highly repetitive. Humans are still incredible in terms of perception, dexterity, cognition and reasoning, so the combined human-robot system offers a number of added advantages.

One of the challenges is also is also to provide easy programming. A traditional industrial system will have a cost break down of ~25% for the robot, ~25% for auxiliary hardware and 50% for software. Through new programming paradigms it is possible to design systems that are much faster to program – the Baxter robot is an example of a new generation of such systems.

Updated National Robotics Roadmap

Tags

,

As mentioned in an earlier posting the US National Robotics Roadmap was published the past week. The roadmap is a revision of the First US Robotics Roadmap that was released May 2009 based on a CCC sponsored study. The second version of the roadmap contained an update to three sections i) manufacturing, ii) healthcare/medical robotics, and iii) service applications (domestic and professional). In addition, new sections covering defense and space were added to the roadmap.

During 2011 we saw a 40+% increased in robot sales in the US for manufacturing. We also saw significant growth to service and healthcare applications. Overall the sector experienced fantastic growth. We have also seen how utilization of robotics and automation has enabled companies such as Apple, Lenovo, GE, Foxconn, … to setup new manufacturing facilities on US soil. Robotics has become an important catalyst to drive forward jobs, the economy and building stronger communities. An important challenge is to ensure education of our workforce. This includes all levels of the enterprise from design to manufacturing and from factory floor to board room. We have a significantly shortage of people to staff the manufacturing enterprise.

Robots to Spur Economy, Improve Quality of Life, Keep Responders Safe

Tags

, ,

Press release from Georgia Tech – March 20:

Robots are being used more widely than expected in a variety of sectors, and the trend is likely to continue with robotics becoming as ubiquitous as computer technology over the next 15 years.

That is the message Henrik Christensen, Georgia Tech’s KUKA Chair of Robotics in the College of Computing, will bring to the Congressional Robotics Caucus on March 20 as he presents, “A Roadmap for U.S. Robotics: From Internet to Robotics – 2013 Edition.”

The report, which outlines the progress of robots in multiple industries over the last five years and identifies goals for the coming decade, highlights robotics as a key economic enabler with the potential to transform U.S. society.

“Robots have the potential to bring manufacturing jobs back to the U.S., to improve our quality of life and to make sure our first responders and warfighters stay safe,” said Christensen, who is also the coordinator of Robotics VO, sponsor of the report. “We need to address the technical and educational needs so we can continue to be leaders in developing and using robotic technology.”

A group of more than 160 experts from universities, industry and government came together for five workshops over the last year to fully evaluate the use of robotics across various applications and create a roadmap to the future. Christensen is presenting that report to lawmakers as a guide on how to allocate resources to maximize progress.

Most notably, the group found using robots in manufacturing could help generate production systems that are economically competitive to outsourcing to countries with lower wages.

Already companies like Apple, Lenovo, Samsung and Foxconn have begun to “reshore” manufacturing by using robotics in production systems. The sale of robotics in manufacturing grew by 44 percent in 2011 as robots have become cheaper and safer. The use of robots is shifting from big companies like GM, Ford, Boeing and Lockheed Martin to small and medium-sized enterprises to enable burst manufacturing for one-off products, the report found.

But Christensen notes that automation in manufacturing will not lead to job losses for U.S. workers, but will create new high-value jobs.

“Some jobs will be eliminated but they are the ‘dirty, dull and dangerous’ jobs,” Christensen said. “Those jobs will be replaced with skilled labor positions. That’s why one of the goals in the roadmap is to educate the workforce.”

In addition to manufacturing, robots are helping businesses, such as Amazon, improve logistics and reduce delivery costs, a savings that could be passed onto the consumer. In agriculture, robots are being used to precisely deliver pesticide onto crops, reducing unnecessary exposure of chemicals on produce. The report recommends that progress in both areas be expanded.

With advances in human-like manipulation, robots are increasingly assisting individuals with disabilities with tasks like getting out and preparing meals. They are also being used in 40 percent more medical procedures than a few years ago in a greater number of surgical areas such as cardiothoracic, gynecology, urology, orthopedics, and neurology. The use of robots for surgery can reduce the complications by 80 percent, the report found.

Robots have proven their value in removing first-responders and soldiers from immediate danger. More than 25,000 robotic systems were deployed in Iraq and Afghanistan for ground and aerial missions. More than 50 percent of pilots in the U.S. Air Force operate remotely piloted systems and never leave the ground.

Robots are also becoming integral part of space exploration, such as Opportunity and Curiosity on Mars. A “robonaut” is on the International Space Station helping with menial but important research tasks.

As impressive as the progress in robotics has been, the report outlines 5-, 10- and 15-year goals to take robotics to the next level. Critical capabilities that should be developed for robotics include 3-D perception, intuitive human-robot interaction and safe robot behavior.

The report is an update to the initial robotics roadmap, which was published and presented to Congress in May 2009. That roadmap led to the creation of the National Robotics Initiative, an effort jointly sponsored by the National Science Foundation, the U.S. Department of Agriculture, the National Aeronautics and Space Administration and the National Institutes of Health. It also established Robotics VO, an umbrella organization that brings all robotics players together to focus on joint initiatives.

“Robotics is one of a few technologies capable of building new companies, creating new jobs and addressing a number of issues of national importance,” said Christensen. “We hope this report will help foster the discussion on how we can build partnerships and allocate resources to move the robotics industry forward.”

Robots, Jobs and Economic Development

Recently there has been a lot of press stories about robots, the economy
and its relation to employment. The stories are mixed. Some claim that
we will loose jobs to robots others are saying that through use of
robots manufacturing in the US will grow. In reality both of those
viewpoints are valid and understandable. Unfortunately most of the
stories are presented as one or the other. A more two-sides presentation
is beneficial.

Over the last few years we have seen an increase in use of robot
systems. Robots have been used for dull, dirty and dangerous jobs. This
includes welding, sorting in warehouses, electronics assembly. It is
clear that introduction of robots to perform a job that a human was
doing before might displace a person. There are three kinds of uses: 1.
introduction of robots to perform tasks that cannot be performed by
humans, 2. introduction of systems to assist people, and 3. introduction
of systems to do work formerly performed by humans. The motivation for
displacement of labor is typically higher performance, which can be
lower price, higher quality or improved performance.

Throughout history there has been a worry about new technology. About
130 years ago people were worried with the introduction of steam engines
and assembly lines. What would happen to the labor force? Eventually we
had the automotive industry that could generate affordable cars for
everyone and a significant number of new jobs. Around 1980 secretaries
were worried about their jobs as typing pools disappeared due to the
introduction of personal computers. Today most people handle their own
email, … but there are nonetheless more administrative assistants
doing travel, scheduling, meeting minutes. The jobs have become
increasing skilled. So one of the challenges we are experiencing is that
some unskilled jobs gradually are getting automated and the displacement
in jobs is from unskilled to skilled labor. It will be important for the
work force to continue to receive training.

As an example through use of robots it is possible to reduce the price
of manufacturing, which in turn enables in-sourcing. Apple has
announced a new plant in the US and so has Lenovo. Tesla manufactures
green cars in California. Welding is performed by robots just as it has
been done for 30 years in Detroit. Some of the jobs carried out in
foreign countries can only be insourced through use of automation.
However, every job in manufacturing creates another 1.3 associated jobs
in services, supply chain, etc. The economy is growing and slowly we are
recovering jobs. The current trend is that jobs that were outsourced
earlier are returning to America, some of them through use of automation
and some new ones for manufacturing and some in associated industries.

Follow

Get every new post delivered to your Inbox.